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ISOTHERMAL FLOW PAST A BLOWING SPHERE
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SUMMARY

Steady, axisymmetric, isothermal, incompressible flow past a sphere with uniform blowing out of the surface
is investigated for Reynolds numbers in the range 1 to 100 and surface velocities up to 10 times the free
stream value. A stream-function—velocity formulation of the flow equations in spherical polar co-ordinates
is used and the equations are solved by a Galerkin finite-element method. Reductions in the drag coefficients
arising from blowing are computed and the effects on the viscous and pressure contributions to the drag
considered. Changes in the surface pressure, surface vorticity and flow patterns for two values of the Reynolds
number {1 and 40) are examined in greater detail. Particular attention is paid to the perturbation to the
flow field far from the sphere.
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1. INTRODUCTION

An understanding of the motion and evaporation of fuel droplets is essential to the development
of physical and numerical models describing the combustion of liquid fuel sprays in furnaces
or internal combustion engines. The models used to date have either neglected the effects of
motion® or incorporated simplified models: the model for drag is appropriate to steady isothermal
flow past a sphere, and that for evaporation is for a single isolated droplet in a stagment ambient
fuel-vapour atmosphere, both models are adjusted to coincide with accepted correlations.> >

In this paper we discuss a numerical solution of the equations for isothermal, incompressible,
laminar flow past a sphere with uniform normal blowing over the surface. These calculations
incorporate qualitatively the effects of evaporation and they clearly show the important physical
processes in the flow. However, the assumptions of uniform blowing and constant properties
are gross simplifications of the actual flow, and so further work will comprise full heat and mass
transfer calculations. As estimates of numerical accuracy are easier to find for the isothermal
calculations described here, the present results will provide invaluable experience and will be
used to validate subsequent solutions of the thermal problem.

Isothermal flow past the sphere is described by two parameters: the Reynolds number Re and
the blowing number A. The Reynolds number is defined as

Re=d Up/pu, 0)]

where d is the droplet diameter, U its velocity relative to the surrounding gas, p the density and
u the dynamic viscosity of the gas. Typical values of Re are less than 1000; for example a 100 um
drop moving at 8ms ™! through kerosene vapour at 1000K gives Re = 160. Steady isothermal
flow around a sphere is stable at low Reynolds number; it becomes unstable at a Reynolds
number of 130, when oscillations appear in the wake.* Therefore for Re < 130 the drag can
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be determined by examining steady flow past a spherical drop. The blowing number is a measure
of the strength of the evaporation and is defined as

A=V/U, @

where V is the radial gas velocity at the droplet surface. For an evaporating drop, this is
determined by the temperature gradient and the thermal conductivity in the vapour at the
droplet surface, and by the latent heat of vaporization. As an example, for small Reynolds
numbers A is approximately 2/Re for a kerosene droplet at 480 K moving through vapour at
1000 K. This shows that the blowing velocity can be comparable to the droplet velocity.

There have been a number of calculations of the drag on cylinders and spheres in steady,
isothermal flow. The most extensive calculations for non-blowing cylinders are those of Fornberg.®
Solutions for non-blowing spheres include those of Hamielec et al.® Le Clair et al.,” Dennis and
Walker,® Renksizbulut,® Renksizbulut and Yuen!® and Cliffe and Lever.!':!? In the last two
papers a method similar to the one described here is used, a variety of grids are considered, and
error estimates presented. Fewer authors have considered blowing spheres. The calculations by
Hamielec et al.® and Chuchottaworn et al.'® are inaccurate because the position of the outer
boundary of the solution region is rather too close to the sphere. Renksizbulut and Yuen®!®
have considered both isothermal flow past a non-blowing sphere and the full heat and mass
transfer within flow around an evaporating drop. However, they only report® on the use of a
single finite-difference mesh and they comment that their results are only accurate to within a
few per cent.

Finally Dukowicz'* has found an analytic solution for the case of low Reynolds number
(Re < 1) but arbitrary blowing Reynolds number (Ry= ReA). This provides a useful
comparison with our numerical results.

In the next section we discuss the mathematical formulation of the equations, boundary
conditions and the drag calculation; and then in Section 3 the finite-element numerical method
used for the solution is briefly described. Finally in Section 4 we present the results of the
calculations by showing how surface blowing affects the drag coefficient, the flow streamlines,
vorticity contours and values of the surface vorticity and surface pressure. The Reynolds numbers
used are in the range 1 to 100; for Re = 1, A varies from 0 to 10, whereas for Re = 100, A ranges
from O to 1.

2. MATHEMATICAL MODEL

In this section we describe the mathematical formulation used to model flow around a blowing
sphere, attending to the form of the Navier—Stokes equations, the co-ordinate system and the
boundary conditions. In particular we discuss the boundary condition to be applied at a large
distance from the sphere. Formulae for calculating the drag coefficient, surface pressure and
jump in stream function across the wake are also presented.

2.1. The equations and boundary conditions

The Navier—Stokes equations can be formulated in terms either of the stream function and
the vorticity or of the velocity and pressure. For the case of isothermal external flows there are
advantages in using the stream-function—vorticity form that result from the nature of the flow
in the region outside the wake and far from the body. Here viscous forces are negligible and
the flow is essentially irrotational, so the vorticity is very small and the stream-function—vorticity
equations simplify to a single linear, elliptic equation for the stream function. With the velocity—
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pressure form, the equations are still non-linear in the inviscid region, being essentially the Euler
equations. In addition, it is somewhat easier to develop and apply a physically meaningful
boundary condition for the stream function than for the velocities. The details of this boundary
condition are discussed below.

It is natural to use spherical polar co-ordinates (r, 6, ¢), and with axisymmetry, the equations
for the stream function and vorticity are
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where ¥ is the stream function, { the vorticity and Re the Reynolds number (1). The equations
have been made dimensionless by dividing distances by the radius of the sphere and velocities
by the free stream velocity. These equations are solved in the region given by 1 <r<r, and
0 < 4 < n. For computational purposes we introduce the variable ¢ = In(r) and treat £ and 6 as
the independent variables. This change of variables produces a natural compression, in real
space, of the grid lines near the sphere.

Equations (3) and (4) must be supplemented by appropriate boundary conditions. Along the
upstream symmetry axis (0 = z), ¥ and { are both zero. Around the surface of the sphere (r = 1),
the zero tangential velocity condition implies dy/0r is zero, and the uniform blowing velocity
implies that  decreases round sphere and is given by

y=—Al+cosf) at r=1. ®

Along the downstream symmetry axis (6 = 0), { is again zero and Y constant ( — 2A).

One of the difficulties associated with external flow calculations is the specification of boundary
conditions far from the body (sphere in this case). This question is much more acute in two-
dimensional calculations where the disturbance to the free stream flow decays more slowly than in
three dimensions. Nevertheless, insufficient care can lead to inaccurate results even in three-
dimensional calculations.

The boundary condition on vorticity far from the sphere is that { =0 for 7/2<6 <= and
0¢/dr =0 for 0 < 0 < /2. Vorticity is created at the surface of the sphere and then diffuses away
from the surface and is convected downstream by the flow. The part of the boundary n/2 <0< n
at r=r, is the inflow boundary and the above boundary condition expresses the fact that there
is no vorticity in the free stream. The boundary condition applied on 0 < # < /2 is numerically
convenient, and because of the form of the vorticity equation, any error introduced by this
condition decays exponentially away from the boundary.

Most previous calculations of flow past a non-blowing sphere have employed a free stream
boundary condition on the stream function at r = r_. This implies that r_, is sufficiently large
so that at r=r_ the stream function is unaffected by the presence of the sphere. The error
introduced by this boundary condition decreases as r,, increases, but for practical values of r
it may still be significant. For the blowing sphere we write

¥ =1r?sin? 6 — A(1 + cos 0) + ¥, ©

where 4r?sin? 0 is the stream function for the uniform flow in the absence of the sphere and
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mass source, — A(1 + cos 8) is the stream function for a point source emitting at the same rate
as the blowing sphere, and ¥, is the perturbation due to the presence of the sphere. Then the
boundary condition that the stream function far from the sphere is not affected by the presence
of the sphere, implies that

Yp,=0 at r=r,. (M

A better boundary condition may be developed by noting that at large distances from the sphere
and for arbitrary Reynolds number, the perturbed component of the flow has two parts.* There
is an inflow in the wake region which is associated with the momentum defect: the momentum
removed from the free stream which produces the drag on the sphere. To compensate for this
inflow there is a uniform radial outward flow which, at large distances, looks like the flow from
a point source of mass at the sphere. At sufficiently large distances the perturbed flow is radial;
this implies that

o,

—F =0, 8

or ®
The condition (8) is much easier to apply in a stream-function—vorticity formulation than in a

velocity—pressure formulation. This condition has been used previously by Fornberg? in a study of

flow past a circular cylinder. It has a more secure physical basis than the boundary condition (7)

and we thus expect to be able to apply it closer to the sphere.

2.2. The drag coefficient and surface pressure

In addition to the dependent variables of (3) and (4)—the stream function and vorticity—
certain other quantities reveal important characteristics of the flow. The drag coefficient is of
particular importance; it is related to the drag on the sphere by

_ D
YIRS
where D is the force in the direction of the flow, and A is the cross-sectional area normal to the

flow (nd?/4). The force on the sphere can be split into three parts: the viscous, pressure and
thrust components,

Co ®

D=D,+D,+D,

= J 2ue-dS — j pdS — j pu(u-ds), (10)
sphere sphere sphere

where e is the rate-of-strain tensor, p the fluid pressure and u the fluid velocity (with radial and
tangential components u, and u,). The viscous component of the drag coefficient (9) can be
expressed in terms of the dimensionless variables of (3) and (4) as
I
C,= —EIO(Cs1n29),=,d9. 1y

From the 8 component of the momentum equation, it can be shown that at the surface of the

sphere, where u, =0,
p 2 o ou,
= = —J—ul{+—=1] 12
(60)r=1 Re(c+ (31‘) u,(Q " 06 ) (12
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Using (12), the pressure or form component of the drag coefficient can be written

4 (*/. & Reu,
Cp-"—‘R—e (C

Yo T2

However in the case considered here, the blowing is uniform around the sphere, so the thrust
component, Cy, is zero and (13) can be rewritten as

C),=1 Zecw--7 (13)

4 [t 8 ReA -
Co=r5 0(“@7 C)lesm 6 de. (14)

Another quantity of interest is the surface pressure. First, integration of the radial component
of the momentum equation along the upstream dividing streamline (0 = n) gives the value at
the front of the sphere to be

a
Pe —-pw+2(1—A2)+—f (66)9 L2 (15)

where & = Inr and p, is the pressure far from the sphere. Then integration of (12) around the sphere,
recalling du,/00 = 0, gives

B /(2 2
p(G)—p,,+L((E—A>c+§;b¢)’=1d9. (16)

If A is set to zero in the above expressions ((11), (14)—(16)), they correspond to those of Dennis
and Walker,® whose definition of Cy, is, however, half the one used here (9).

2.3. The momentum defect in the wake

Finally, we investigate how blowing modifies the relationship between the drag and the
momentum defect associated with the inflow in the wake. For this, the integral form of the
momentum equation is applied in precisely the same manner as described by Batchelor® for the
non-blowing case. With uniform blowing there is no net flux of momentum out of the sphere,
and so the only alteration to the argument is the inclusion of the flux out of the sphere in the
mass conservation equation. This gives

D= —npU?Ad? + pUQ, 17

where Q is the volume defect. Moreover, Q can be related to the jump in the perturbation stream
function, ¥, (6), across the wake

0= _%ndzU[‘llp]0=0‘ (18)
So substitution of (9) and (18) into (17) gives
[¥plo=0 = —2A —3Cp, (19)

indicating that the jump in y, is rather larger in the blowing case. The corresponding form of y, far

from the sphere is
0, 0=0
lll"“{-(A +4Cp)(1 +cosh), 0>0 "o (20)

Equation (17) gives the strength of the apparent source of mass at the sphere arising from the
volume defect in the wake to be Q = nd?V+ D/pU. This is in addition to the actual source nd*V
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arising from the uniform blowing, and so, outside the wake, the total apparent source is
2nd*V+ D/pU, 2y

that is the sum of the contribution from the drag found in the non-blowing case and twice the
flux arising from the uniform blowing at the surface.

3. NUMERICAL METHOD

A Galerkin finite-element method using nine-node biquadratic elements is used to discretize
equations (3) and (4) with ¢ and 0 as independent variables. The method is similar to that of
Tong!> and has been used previously by Winters and Cliffe'® and Cliffe and Lever,!!'? among
others.

The only difficulty, which therefore requires specific attention, is the imposition (8) of the zero
normal derivative far from the sphere as an appropriate boundary condition on the perturbation
steam function. The obvious solution is to use the perturbation stream function ¥, as the second
dependent variable (the first being vorticity), since zero normal derivative is then a ‘natural’
boundary condition. ¥, satisfies equations derived from (3) and (4) by substitution of analytic
expressions for the undisturbed stream and point source stream functions (equation (6)). In
particular, the stream function for the undisturbed stream is given by

Yo = 47r%sin? 0. (22)

Unfortunately, the usual finite-element treatment of Y, appears to be unsatisfactory. We found
that the solution for the surface vorticity exhibited ‘wiggles’ particularly in the regions near § =0
and 6 = n. We attributed these ‘wiggles’ to the fact that the finite-clement interpolation of sin* 8
is not very smooth, and the 1/sin 6 terms in equations (3) and (4) amplify the effect. Since the
surface values of stream function are fixed, this shows up in the surface vorticity.

The expedient we adopted is to replace the analytical solution for ,, which is the cause of
the problem, by a finite-clement approximation, which is obtained by solving equation (3) with
{ =0 and appropriate Dirichlet boundary conditions at the surface of the sphere and at the
boundary at ‘infinity’. We then have

J =, —A(l +cos) + (23)

where ~ denotes finite-element approximation. Equation (3) is then regarded as an equation for
1/7p, and the above treatment removes the wiggles in surface vorticity.

As a result of solving equations dependent upon ¥, for x/?p and (, care is needed to ensure
that the condition that x/7p has zero normal derivative on the boundary far from the sphere is
applied correctly. In particular, the approximation to the normal derivative of {,, on the
boundary must ensure that the terms in the finite-element equation involving ,, cancel. This
is known as the ‘consistent’ finite-clement approximation to the derivative. If the consistent form
of the derivative is not used, the problems encountered near the sphere move to the boundary
at ‘infinity’, and large errors result in the stream function there.

The non-linear algebraic equations for the nodal values of stream function and vorticity are
solved by Newton’s method. The linear system at each iteration is solved using the frontal
method.}’?

We believe that the drag calculations described in the next section all have an error of less
than 1 per cent and many are more accurate. A variety of uniform grids were used in the
calculations, specified by three quantities: n, the number of elements in the # direction, n, the
number of elements radially and &, the position of the outer boundary where the condition (8)
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was applied. Different values of these quantities are needed to obtain the above accuracy for
different ranges of Re and A.

In the absence of blowing, it is quite easy to obtain values of the viscous component C, (11)
that vary little with grids used. Values of C, (14) that are independent of ¢, or n, can also be
obtained; however independence of n, is not as easy to achieve. Since the expression for C, only
contains values of { on the surface of the sphere, we expect O(h®) convergence, where h is the
element size in the radial direction (¢, /n,). However, as C, involves radial derivatives of {, we
expect an O(h?) component in the error. As a result C,, converges more slowly. So the results
of different grids are used to calculate an extrapolated value of the drag coefficient, using an
expression of the form

v(h) = e + ah® + Bh>. (24)

Three grids are used to give ¢, « and f; typical values of n, are 60, 80 and 100. This is not a
strictly rigorous refinement procedure; successive bisection in both directions for all values of
¢, is not practical.

When there is significant blowing and the blowing Reynolds number (Ry = ReA) is large, the
major contribution to C, comes from the final term in (14), and

R
C,~ z‘icv » C,. (25)

As a result the extrapolation procedure is no longer necessary and 50-80 radial elements are
sufficient. However, the vorticity is now blown away from the sphere, so care has to be taken
that the outer boundary of the solution region (&) is far enough away. Whereas for most non-
blowing cases ¢, = 3-6 (r,, = 36-6) suffices, with significant blowing & , = 4-2(r, == 66-7)is required.
This leads to one final problem: the resolution of the narrow wake at large Re. In real space,
the wake grows as*
X
2 P T p—
S~ (26)
where s is the distance from the axis, and x the distance along the axis. When expressed in terms
of (= tan~'s/x) and &( = Inv), this becomes

f ~(Ree?)~ V2, (27)

So with large £, and Re, more elements in the 6 direction are required to adequately resolve
the wake. For the cases described in the next section with Re = 100 and A = 0-3, 40 elements are
used, rather than 20 or 30 as in the majority of other cases.

4. DISCUSSION OF RESULTS

4.1. The drag coefficient

The drag coefficient Cp, and its two components C, (11) and C, (14) have been calculated
from finite-element flow solutions for a range of Re and A. Values of Re were in the range 1 to
100; for Re =1, A was varied from 0 to 10, but as Re was increased the maximum value of A
considered decreased, until for Re = 100, A ranged from 0 to 1. The results are shown in Figure
1 where Cp, C, and C, are plotted as functions of A for Re=1, 2, 5, 10, 40 and 100, and are
summarized in Table I. For the parameter ranges considered, the effect of increasing A is always
to decrease the drag.
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Figure I. The drag coefficient Cy, as a function of blowing number A for Re = 1, 2, 5, 10, 40 and 100. Cp,-~~Cp
—-—-C,. The right hand ordinate is Cp/Cp,, where Cp, is the coefficient at the same Reynolds number and A=0

Table I. The drag coefficient for a range of Reynolds
numbers (Re) and blowing numbers (A).

A
Re 0 03 10 30

1 2732 2631 2409 18-87
2 1492 1393 11-09 790
5 7-14 621 4-60 2:66
10 4.31 346 2.322 1-540
40 1-789 1-244 1-044 0-860
100 1-088 0-805 0-685 —




1.0

G}
o
o«
~ 0.8}

o
2
< Re =1
®
[ Re = 100

)
8 0.6
= Re = 2
[
:§ Re = 40
@
° 0.4
1] Re = 5
o Re = 10
S
b~
®
[=
2 0.2
Q
g
w

0.0 1 |

0 1 2 3

Blowing number A

Figure 2. The drag coefficient divided by its value at the same Reynolds number in the absence of blowing, as a function
of blowing number; for various Reynolds numbers
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Figure 3. The drag coefficient (Cp) divided by the Stokes drag (24/Re), as a function of blowing Reynolds number (ReA);
for various Reynolds numbers. -- - low Reynolds number analytic solution of Dukowicz'*
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In the absence of blowing and at low Re, C, = 2C,. As Re increases, the difference between
C, and C, decreases until at Re = 100 they are almost equal. Increasing A results in a rapid fall
of C,, as the vorticity is blown away from the surface and is drastically reduced. When ReA is
large, (25) is satisfied and C, ~4C_/ReA « C,. Indeed an examination of the numerical results
suggests that C, ~4Cp/ReA is an even more accurate approximation. At the lower values of
Re, C, also falls steadily with increasing A, although less rapidly than C,. However for Re = 40
and 100, C, initially rises, reaches a maximum and then decreases. The increase in C, is much
smaller than the fall in C, and so Cy, still decreases. This observation contradicts the argument
sometimes found in the literature that the fall in C, is compensated by a comparable rise in C,,
so that there is essentially no change in Cp. For no range of A is Cp, approximately constant.

It might be thought that at high Re blowing would enhance boundary layer separation,
increasing the drag. However, if this argument is valid, it applies outside the range of Re considered
here, when the steady solutions will no longer be stable.

= —

(i)

(i)

Figure 4. Flow past a sphere for Re =1, A = 1:(i) streamlines, y =8, 7-5,7...... ~1-5, — 2 (in intervals of 0-5); (ii) vorticity
contours, { = — 08, - 04, —02, - 01, 005, —0025
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In Figure 2 the drag coefficient expressed as a fraction of the value at the same Reynolds
number, but in the absence of blowing (that is as a fraction of Cy,, = Cp(Re, 0)), is plotted against
Afor Re=1,2,5, 10,40 and 100. The Figure shows that the slope of these plots at A = 0 becomes
steadily steeper (that is more negative) with increasing Re, but we also see that the slopes for
higher Re become less steep at much lower values of A, and as a result the curves cross. Thus
for values of A greater than about 09, the value of Cp,/Cp, is greater at Re = 40 than at Re = 10,
and beyond A = 1'5 it is greater at Re =40 than at Re = 5.

Dukowicz'* has found an analytic solution for small Re(Re < 1) and arbitrary blowing
Reynolds number (Ry = Re A). To examine the approach to his solution, the drag coefficient
divided by the Stokes drag coefficient for the case of no blowing (24/Re) is plotted against Ry
for Re=1, 2, 5 and 10 in Figure 3. The curves are seen approaching his limit as Re decreases.

4.2. Flow patterns

To examine the effects of blowing on the flows, we focus on two values of the Reynolds
number, Re = | and 40, to illustrate the difference between results at low and high values. In

(ii)

Figure 5. Flow past a sphere for Re =40, A = 0: (i) streamlines, ¥ = 3-65, 2:53, 1-62, 0:91, 041, 0-101, 0-025, 0-0063, 0,
- 0-0001; (i) vorticity contours, { = — 32, — 1-6, — 08, — 04, —(0-2, —0-1,0, 01
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(i)

=0.16
NS f-m-;-
0.
(ii)
Figure 6. Flow past a sphere for Re = 40, A = 1: (i) streamlines, ¥ = 6'5, 6, 55, 5, 4'5, 4, 3-5, 3, 2:5, 2, 15, 1, 05, 0, — 05,
—10, — 1.5, —2, —2.04, — 2.08; (ii) vorticity contours, { = — 0:64, — 032, —0-16, — 0:08, — 0-04, — 002, — 001, 0,
001, 0-02

Figures 4-6 streamlines and vorticity contours close to the sphere are shown for three cases:
Re=1,A=1;Re=40,A=0; Re =40, A = 1. For Re =1, A = 1 the vorticity contours are nearly
symmetric about § = n/2, and are very similar to the solution without blowing. There are more
significant differences between results for the two calculations with Re=40. The small
recirculation zone behind the sphere for A =0 is replaced, at A=1, by a large detached
recirculation extending nearly 11 radii downstream. In addition, the magnitude of the vorticity is
reduced and the vorticity is blown away from the sphere. Indeed the maximum is no longer on the
surface of the sphere.

The solution for Re=40, A=1 is shown again in Figure 7 where two of the dependent
variables ¥, and { are plotted as functions of the independent variables of the computations 6
and ¢ (£ =0 corresponds to the surface of the sphere and & = 4.2 the outer boundary of the
solution region). The narrow downstream wake at 8 =0 is seen in both plots, and the large
region outside the wake and far from the body where the flow is irrotational and the vorticity
is zero is clear. If the free stream boundary condition (7) had been applied instead of the zero
normal derivative condition (8) all the y, streamlines would have been closed inside the outer
boundary (¢ =4-2).

The perturbed stream function far from the sphere is shown again in Figure 8, where it is
plotted in real space for Re=1, A=1 and Re=40, A = 1. In Figure 9 the limiting form of y,,
far from the sphere (20), evaluated using the computed drag coefficient, is compared with the
calculated values on the outer boundary for two values of &, (4-2 and 4'8) and for the above
values of Re and A. Far from the sphere the wake subtends an infinitesimal value of 8, given
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(ii)

Figure 11. p+1A? on the surface of the sphere as a function of 8 (0 = 0 is the downstream symmetry axis) for (i) Re = 1,
A=0,1,3,10and (i) Re=40,A=0,03,1, 3

Table II. The variation of the pressure at the surface of the sphere
on the upstream axis (p,) and downstream axis (p,) with A for two
values of Re.

A Dr Po pn+%A2 p0+%A2
(i) Re=1
0 3-87 —2:97 3-87 —297
1-0 322 —3-34 372 —2:84
30 - 107 —7-:08 343 —2-58
100 — 4737 —51-86 2:63 —1-86
(1)) Re =40
0-623 - 0093 0-623 —0-093
03 0-563 —0-204 0-608 —~0-159
1-0 0-078 — 0665 0-578 ~ 0165

30 — 3951 — 4610 0-549 —0-110
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by (27), however for Re = 1, A = 1 the computed wake is still quite broad, although it is getting
narrower for £, = 4-8. On the other hand the value of Y, outside the wake is accurately predicted.
For Re =40, A =1 the wake is quite narrow, but the value outside is overestimated as not
enough of the streamlines are closed. The estimate at the higher value of ¢ is better, but there
is still scope for improvement. It is worth noting that the major contribution to the minimum
value of ¥, (— (2A + 4Cp)), for the case of Re =40, A =1 comes from the blowing term, as
+Cp=0-251. For Re=1, A =1 however, +C,, is 6:02 and so the drag contribution is larger.

The surface vorticity is plotted in Figure 10 for Re = 1 and 40 for various values of A. In both
cases the rapid fall in surface vorticity with increasing blowing is clear; it is more rapid at Re = 40
which is consistent with the fall in C, shown in Figure 1. Figure 11 shows plots of p +4A2
around the surface of the sphere for the same values of Re and A, and the values on the upstream
axis (# =n) and downstream axis (6 = 0) are given in Table II. The pressure is supplemented
by the blowing correction $A? so that the comparison of results at different A is more transparent;
the advantage is apparent from (15). The values for Re = 1 are consistent with the steady fall in C,
shown in Figure 1(i); however, the behaviour for Re = 40 is more complex, and it is difficult to see
that C, initially increases and then subsequently decreases with increasing A.

5. CONCLUSIONS

In this paper we have described accurate finite-element calculations of steady laminar flow past
a sphere with a uniform normal blowing velocity over the surface. Particular attention has been
paid to the boundary condition applied to the perturbation stream function far from the sphere.
The condition (7) that the perturbation stream function should be zero is far less successful than
the zero normal derivative condition (8)-—with the perturbation stream function set to zero the
boundary must be much further from the sphere to achieve a specified accuracy. In addition,
the form of the perturbation stream function v, far from the sphere cannot be examined with
the condition (7).

From the integral form of the momentum equation, we have shown that the expression for
the volume defect in the wake is the sum of the drag contribution found in the absence of
blowing and the total mass efflux from the sphere. So the total apparent source far from the
sphere and outside the wake is the sum of the drag contribution and twice that due to blowing.
The computed values of ¥, on the outer boundary of the solution region have been compared
with the analytic form corresponding to the above result.

We were motivated to carry out these calculations in order to obtain a qualitative measure
of the effects of evaporation on the drag on fuel droplets. For the range of Re considered
{1 < Re < 100), blowing always decreasess the drag, and significantly as long as the blowing
velocity is comparable to the free stream velocity. This means that an evaporating drop penetrates
further into, for example, a furnace than would be predicted by the standard drag law that
applies in the absence of blowing.

The pressure and viscous components, C, and C,, of the drag coefficient have also been
examined. C, is always drastically reduced by blowing, as the vorticity is blown away from the
sphere and the surface value reduced. Indeed for higher values of Re and A the maximum
vorticity is no longer found on the surface. For low Re, C, also falls with increasing A, although
more stowly than C,, as found in the low Re solution of Dukowicz.}* For Re =40 and 100 it
is found that C,, initially increases, reaches a maximum and then decreases. However, the increase
in C, is much smaller than the fall in C,, and thus Cj, still decreases, contradicting the argument
sometimes found in the literature that the fall in C, is compensated by the rise in C,, so that
the resulting change in Cp, is small.
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